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Abstract

The Maximum Scatter Traveling Salesman Problem

(MSTSP) is a variant of the famous Traveling Salesman

Problem (TSP) and finds its use in several real-world ap-

plications including manufacturing, imaging and laser melt-

ing processes. The objective of this problem is to maxi-

mize the cost of the least cost edge in a tour of an input

graph. Akin to the TSP and several of its variants, the

MSTSP is an NP-hard problem. While several approxima-

tion algorithms have been proposed for this problem, many

of them suffer from bad worst-case complexities and present

challenges in scalability and practical use. Besides, these

algorithms have often been designed and evaluated with a

sole focus on theoretical approximation quality, while prac-

tical applications require detailed experimental evaluations

to study the stability, quality and runtime over a large and

diverse set of inputs. In this work, we describe six algo-

rithms for MSTSP inspired by prior work in the area, along

with improved formulations that enhance their utility in real-

world scenarios. Further, we perform experimental studies

motivated by smoothed analysis to comprehensively evalu-

ate these algorithms on various performance metrics. We

demonstrate that despite having bad worst-case complexi-

ties, certain algorithms perform exceedingly well in practical

use cases. Our experiments reveal trade-offs among the run-

time, quality and stability of different algorithms that must

be considered when making a design choice depending on

the objectives and constraints associated with the use of the

algorithm.

1 Introduction

The Traveling Salesman Problem (TSP) [11] is a well-
known and widely studied discrete optimization prob-
lem where the objective is to find a tour through all
nodes in an input graph such that the total tour cost
is minimized. The Maximum Scatter Traveling Sales-
man Problem (MSTSP) is a modification of this prob-
lem where the objective is to find a tour such that cost of
the least cost edge is maximized. Formally, the problem
can be defined as follows.
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Given a set of points P = {p1, ..., pn}, we consider
a tour T over these points. The scatter of the tour, T
is defined as the cost of the least cost edge in T . The
goal of the MSTSP is to find a tour of points in P with
the maximum scatter, i.e., to maximize the cost of the
least cost edge in a tour of P .

The MSTSP was first introduced in 1997 [2], moti-
vated by problems in riveting and medical imaging. It
also has applications in laser melting, additive manufac-
turing [14], etc. where an optimal placement of items
in a sequence needs to be identified so that they are
geometrically well-separated to avoid interference. Sim-
ilar to other variants of TSP, solving MSTSP exactly
is NP-hard [2]. Therefore, efficient algorithms iden-
tified so far are approximation schemes that compute
a tour whose scatter is at least a factor ε ∈ (0, 1) of
the optimum, called as an ε-approximation. Asymp-
totically optimal and linear-time, deterministic weave
algorithms [7] work only for graphs with vertices on
a regular 2D grid while the complexity of the general
MSTSP in a plane remains open. Using Dirac’s theo-
rem [4], [2] proposes a 0.5-approximation for MSTSP in
the Euclidean plane and raised the question of whether
a better approximation ratio can be obtained. [9] pro-
poses a non-trivial (1-ε) polynomial-time approximation
scheme that constructs multi-graphs to arrive at an op-
timal tour. However, it has a high dependence on the
precision parameter ε and becomes extremely slow even
for n ∼ 100, which renders it impractical for several
use cases. Recently proposed meta-heuristics like ge-
netic algorithms with different crossover operators [1]
are time-consuming and inappropriate choices of con-
trol parameters, fitness functions will make it difficult
for the algorithm to converge.

Hence, there is a clear need for algorithms that are
easy to implement, practical in real world applications
and scalable. Besides, we require a thorough experi-
mental evaluation of algorithms based on diverse met-
rics that influence overall performance to understand
scenarios where each of them may be useful. Many al-
gorithms work well on real data, despite having poor
complexity under the standard worst-case measure, like
the simple 2-opt algorithm [3] as we will demonstrate.
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Many proofs of worst-case complexity make use of con-
trived constructions of ‘bad’ inputs [6] whose existence
and applicability in any real-life setting is uncertain.
Perturbation analysis [13] helps explain the behavior of
algorithms in practice by subjecting the algorithm in-
puts to slight random perturbations and evaluating its
average performance over the perturbed inputs.

In Section 2, we describe six approximation algo-
rithms for the MSTSP which are derived from pre-
viously proposed approaches either for the TSP or
MSTSP. We introduce suitable modifications to some
of these algorithms to enhance their practical usabil-
ity in real-world scenarios. In Section 4, we describe
the dataset that we use to evaluate our algorithms and
perform experiments. Further, in Section 5, we per-
form a comprehensive perturbation analysis of the six
algorithms and evaluate trade-offs in their practical us-
age. To the best of our knowledge, this is the first body
of work that has performed such a detailed compara-
tive study and experimental evaluation of MSTSP al-
gorithms. The main contributions of this paper are as
follows.

• We present the Naive Greedy algorithm as a fast
and easy-to-implement baseline for MSTSP.

• We present the Naive Weave and Hoffmann Weave
algorithms which introduce an improved formula-
tion of the work in [2] and [7] to extend their us-
ability to non-regular grids.

• We extend the work in [8] to introduce Pure 2-opt
and Randomised 2-opt as very close approximation
algorithms for the MSTSP.

• We use a real-world dataset augmented using five
graph perturbations and evaluated with three edge
cost metrics to perform a comprehensive perturba-
tion analysis of the algorithms and compare results
on three critical performance measures, namely, the
quality, runtime and stability of the algorithms.

2 Algorithmic Description

2.1 Naive Greedy Algorithm. This algorithm
presents a greedy approach for approximating the max-
imum scatter TSP. In this algorithm, we start at a ran-
dom node in the graph and then travel to the farthest
node from it. We iteratively repeat this on visiting each
new node by travelling to the farthest unvisited node.
Once all the nodes are visited, the last edge connects
back to the first visited node to complete the tour. The
cost of the least cost edge in this tour is considered as
the solution to the Maximum scatter TSP for the given
set of points.

2.2 Naive Weave Algorithm. Here, we devise an
algorithm to extend the work by Arkin et al. [2] to
points in a 2D plane. First, we present a method to
define a grid over a given set of points. Then, we
apply Arkin’s algorithm to points in each row of the
grid iteratively. We also make edges between rows to
ensure completion of the tour.

Existing work [7] for approximating the solution to
the maximum scatter of points in a 2D plane is limited in
application to regular grids. This limitation restricts the
usability of the algorithm in several real-world scenarios.
Hence, we present a method to define a grid over any
given set of points, such that applying Arkin’s algorithm
to each row separately gives a fair approximation to the
maximum scatter TSP solution. We note that it is not
necessary for a point to be present in every column of
every row of the grid to apply Arkin’s 1D algorithm over
the row. Specifically, we could leave vacant locations
in a row and still travel through the remaining points
following the sequence ordering proposed by Arkin.

Given a set of n points, we define d as:

(2.1) d = α · b
√
nc

where α is a hyperparameter that is finalized through
experiments.

We sort the given set of points by their row-
coordinates and partition the sorted array into subar-
rays of d points each. The last partition alone may have
less than d points. The points in each partition are as-
signed to the same row in the grid and every point re-
ceives a row index as a result. Next, we sort the points
by their column-coordinates and iterate over them start-
ing from the point with the least column coordinate.
Each new point is added to the first column until a point
having the same row index as a point that is already as-
signed to the column is encountered. Once this occurs,
we create a new column and continue adding further
points to it and repeat the process until all points are
assigned a column index. Thus, a grid over the points
in the 2D plane is defined.

If there are m points in a row of the grid, we visit
the points following the sequence ordering prescribed by
Arkin’s algorithm, i.e,

• If m is even, say, m = 2k + 1: 1, k + 2, 2, k +
3, ...,m, k + 1

• If m is odd, say, m = 2k: 1, k + 2, 3, k + 4, ..., k −
1,m, k,m− 1, ..., k + 1

The points in each row of our grid are traversed
based on the ordering above. The rows are visited
sequentially and we also connect the last visited node
from each row to the first node to be visited from the
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next row. Finally, to complete the tour, the last visited
point from the last row is joined to the first visited point
of the tour. The minimum edge cost in this traversal
is returned as the algorithm’s approximation for the
maximum scatter TSP.

Algorithm 1 Procedure for the Naive Weave Algo-
rithm
1: Given: Graph G(v1, ..., vn)
2: max pts per row ← d = floor(

√
n) · fact

3: Initialise: i← 1
4: Initialise: scatter = +∞
5: Define a grid on these points (num rows= floor(n/d)

or 1+floor(n/d))
6: while i≤num rows do
7: Traverse the row based on Arkin’s ordering of

points [vi,1, ..., vi,k+1]
8: if i = num rows then
9: Jump from vi,k+1 to v1,1

10: else
11: Jump from vi,k+1 to vi+1,1

12: scatter ← min(scatter, highest edge cost in
this traversal)

13: return scatter

2.3 Hoffmann Weave Algorithm. In this algo-
rithm, we extend the algorithm in [7] which works on
regular grids to operate on any given set of points in a
2D plane. We first define a grid over the points using
the method presented in Section 2.2. In the naive weave
algorithm, rows are traversed one at a time after which
the tour moves to the subsequent row. If the edges
between rows have low cost, the algorithm will output
poor approximations. Besides, it is not necessary that
all points in a row are covered together. Instead, we can
take advantage of the second dimension to increase the
minimum edge cost in the tour.

We first explain the method when num rows is even.
We partition the rows into pairs with each pair being
separated by a fixed number of rows. If num rows = 2t,
the rows are paired as (1, t+1), (2, t+2), ..., (t, d). Then,
the traversal is performed by interleaving through one
pair at a time.

For the pair {i, t+ i}, the ordering is given by:

(2.2)
HW{i, t+ i} = (i, σ(2)), (t+ i, σ(3)), (i, σ(4)), ...

..., (i, σ(d)), (i, σ(1))

where d is the number of points in each row and σ(j) is
the jth point in Arkin’s 1D ordering of d points.

To switch between pairs, an edge is made from the
last visited point of the old pair to the first point to be
visited from the new pair. However, switching between
pairs requires a different strategy depending on whether
d is odd or even.

When d is odd, the ordering of pairs is given by:

HW{1, t+1}, HW{t+1, 1}, HW{2, t+2}, HW{t+2, 2}, ...,

..., HW{t, d}, HW{d, t}

When d is even, the ordering of pairs is given by:

HW{1, t+1}, HW{2, t+2}, HW{3, t+3}, ...,HW{t, d},

HW{t+ 1, 1}, HW{t+ 2, 2}, HW{t+ 3, 3}..., HW{d, t}

Next, we explain the method for the case when
the number of rows is odd. We partition the rows
into pairs and a triplet having rows at a distance
of t from each other. First, the traversal through
the triplet is completed. While the column index
for each visited point is decided by whether d is odd
or even as presented earlier, the row index alternates
over 3 possible values. If num rows = 2t + 1, the
rows may be visited in the order (1, t + 1,m, 1, t +
1,m, ...), (t+ 1,m, 1, t+ 1,m, 1, ...), (m, 1, t+ 1,m, 1, t+
1, ...) or (1, t+ 1,m, 1, t+ 1,m, ...), (m, 1, t+ 1,m, 1, t+
1, ...), (t+1,m, 1, t+1,m, 1, ...) depending on the value of
num rows to ensure that no point is visited more than
once before the tour is complete. After this, an even
number of rows remain and the strategy in Equation
2.2 is used for the remaining traversals. The last visited
point is joined back to the first visited point to complete
the tour. The algorithmic procedure is detailed in
Algorithm 2.

2.4 Dirac Algorithm. The Dirac algorithm is based
on Dirac’s theorem [5] which states that if every node of
a graph having n nodes (n > 3) has degree ≥

⌈
n
2

⌉
, then

the graph contains a Hamiltonian cycle. This algorithm
from the work by [2] is a 0.5-approximation algorithm
with O(n2) runtime which is accomplished as follows.
The problem of finding a Hamiltonian cycle in a pruned
graph where each node has degree ≥ dn2 e is as difficult
as finding a Hamiltonian cycle in the unpruned graph
(same order of complexity). So, we start with a random
Hamiltonian cycle instead which is trivially found in the
initial fully-connected, unpruned graph. The median
edge weight of edges from each node in the graph is
computed in O(n2) time. Then, the minimum of all
these medians acts as a threshold. Let E

′
denote the

set of all edges which have edge weight greater than
or equal to this threshold. Any edge of a Hamiltonian
cycle with weight lower than this threshold is pruned
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Algorithm 2 Procedure for the Hoffmann Weave Al-
gorithm

1: Given: Graph G(v1, ..., vn)
2: max pts per row ← d = floor(

√
n) · fact

3: Initialise: scatter ← +∞
4: Define: σ(j) = jth point in Arkin’s 1D ordering of
d points

5: Define: HW{i, t + i} = (i, σ(2)), (t +
i, σ(3)), (i, σ(4)), ..., (i, σ(d)), (i, σ(1))

6: Define a grid on these points (num rows= floor(n/d)
or 1+floor(n/d))

7: if num rows is odd then
8: Complete traversal of rows 1, t+ 1,m
9: scatter← min(scatter, highest edge cost in this

traversal)
10: Ignore these rows to get an even number of

remaining rows
11: num rows ← num rows−3

12: if d is odd then
13: for i = 1 to t do
14: Complete traversalsHW (i, t+i) andHW (t+

i, i)
15: scatter ← min(scatter, highest edge cost in

this traversal)

16: else
17: for i = 1 to t do
18: Complete traversal HW (i, t+ i)
19: scatter ← min(scatter, highest edge cost in

this traversal)

20: for i = t+1 to d do
21: Complete traversal HW (i, i− t)
22: scatter ← min(scatter, highest edge cost in

this traversal)

23: return scatter

and replaced with edge(s) with weight greater than the
threshold through a 2-opt step to result in another cycle.
In more detail, if path P=pv1v2 . . . vn−2q has an edge
(p, q) with edge weight less than the threshold, then
delete edges (p, q), (vi, vi+1) and add edges (p, vi+1),
(q, vi) where i ∈ P ∩Q where P = {i : (p, vi+1) ∈ E′},
Q = {i : (q, vi) ∈ E

′}. P ∩ Q must be non-empty as
P ∪ Q < n (as edge pq doesn’t belong to E

′
) and as

|P ∩Q| = |P |+ |Q| − |P ∪Q| where |P |+ |Q| ≥ n. By
representing the sets P,Q with bit vectors, all of the
bookkeeping can be done in an overall time of O(n2).

2.5 2-opt Algorithm. A naive 2-opt algorithm is
implemented where a 2-opt step is performed when the
current least cost edge (whose weight is the current
scatter value) of a Hamiltonian tour can be replaced

Algorithm 3 Procedure for the Dirac Algorithm

1: Given: Graph G(v1, . . . , vn)
2: Initialise: median[n], valid[n] = {0, . . . , 0}
3: Initialise: Random Hamiltonian path P(p1, . . . , pn)
4: def scatter(Graph G, Path P):
5: return scatter of P, scatter edge’s vertex id
6: for i = 1 to n do
7: median[i] ← median of {d(vi, x) | x ∈ G}
8: min med ← minimum of {median[i] | i ∈ [n]}
9: for i = 1 to n do

10: valid[i] ← {x | d(vi, x) ≥ min med for x ∈ G}
11: for i = 1 to n do
12: p, q ← P[i],P[(i+ 1)%n]
13: if d(p, q) < min med then
14: val p ← { index of x in P | x ∈ valid[p] }
15: val q ← { index of x in P | x ∈ valid[q] }
16: val q ← (val q - 1) % n
17: r ← set intersection(val p, val q)[0]
18: P ← 2opt step(P, i, r)

19: scatter, scatter index← scatter(G,P)
20: return scatter, P

by another edge that connects one of the vertices at the
ends of the current scatter edge to another vertex to
get an improved scatter value. The initial tour may be
randomly initialized, which is referred to as Randomized
2-opt (or) can also be initialized to the Hamiltonian
cycle output from the Dirac algorithm as described
above, which is referred to as Pure 2-opt. There is a
noticeable difference between both variants in terms of
average run time as can be inferred from Table 3. A
2-opt step among quadruplets (1,2,3,4) in a cyclic order
(where vertices 1, 2 and 3, 4 are adjacent in the cycle)
essentially disconnects the edge between 1 and 2, 3 and
4 and creates new edges between 1 and 3, 2 and 4.

3 Smoothed analysis of 2-opt for MSTSP

Let Y = X + Z where X denotes the set of n 2D
data points (from input files) reduced (scaled) to a
unit-square [0, 1]2 and Z denotes a random gaussian
perturbation on X, N (0, σ2) where σ ≤ 1

2
√
n logn

.

The following analysis obtains an upper bound for the
expected number of 2-opt steps for convergence. It
closely follows the work in [10] on smoothed analysis
of 2-opt heuristic for TSP.
Let the total number of iterations taken by the 2-opt
algorithm be denoted by niter, initial tour’s scatter
value be Linit and incremental gain of the scatter value
obtained over iterations (which if zero means that the
algorithm has halted) be δ. To upper bound niter, we
need to upper bound Linit (=Linitmax

) and lower bound
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Algorithm 4 Procedure for the 2-opt Algorithm

1: Given: Graph G(v1, ..., vn), maximum iterations
MAXITER(> 0), Hamiltonian path P(p1, ..., pn)

2: Initialise: iter = 0
3: while iter< MAXITER do
4: found← 0
5: scatter, scatter id← scatter(G,P)
6: for i = 1 to n do
7: p, q ← P[i],P[(i+ 1)%n]
8: r ← P[scatter id]
9: s← P[(scatter id + 1)%n]

10: if d(p, r) and d(q, s) > scatter then
11: P← 2opt step(P, i, scatter index)
12: found← 1
13: break;

14: if found==0 then break;

15: iter ← iter+1

16: return scatter

δ (=δmin) as niter ≤ Linitmax

δmin
. From Lemma 2.3 of

Manthey’s work [10], we have:

P [Linit ≥ 18n] ≤ P [Y 6⊂ [−1, 2]2] ≤ 1

n!

Let y1y2 be the current least cost edge in a cycle P ,
S be the quadruplets (y1, y2, y3, y4) in a cyclic order
(where vertices y1, y2 and y3, y4 are adjacent in the
cycle) and δ(S) be the incremental gain in the scatter
value after performing a 2-opt step on the quadruplets
(y1, y2, y3, y4). If d(a, b) represents the distance between
points a and b computed using one of the metrics in
Section 4,

δ(S) = min(d(y3, y1)− d(y2, y1), d(y4, y2)− d(y2, y1))

w.l.o.g : δ(S) = d(y3, y1)− d(y2, y1) = ∆(3,2)(1)

From Lemma 4.1, 4.2 in [10] which holds for MSTSP
also, we obtain:

P [|∆(3,2)(1) ≤ ε | d(y2, y3) = δ] ≤ ε

4σδ

=⇒ P [δmin ≤ ε] ≤ O(
n4ε

4σ2
)

Finally, following Theorem 4.3 in [10], the expected
number of 2-opt steps on Y required for convergence,

E[niter] = O(n
6logn
σ ) which is polynomial in n as

opposed to the worst-case exponential nature of the
2-opt algorithm for MSTSP, due to its inherent NP-
hardness.

4 Data

To simulate real-world conditions, the data that is used
for our experiments is obtained from the files provided
for Symmetric TSP in the TSPLIB library [12]. From
this library, we take 76 graphs having atmost 2000
nodes. We assume that any two nodes in a graph can
be connected by an edge. For each unperturbed input,
we create 100 perturbed inputs using each perturbation
type mentioned in Table 1 to obtain 7,600 perturbed
inputs for each perturbation type. We anonymously
make the code and dataset used for our work available1.
These would be made publicly accessible if our paper is
accepted to support further research in this area.

The cost of an edge can be computed using one of
three distance metrics. If a1 = (x1, y1) and a2 = (x2, y2)
are the coordinate locations of two nodes in a 2D plane,
the distance metrics are formulated as follows:

• Euclidean: d(a1, a2) = (x2 − x1)2 + (y2 − y1)2

• Manhattan: d(a1, a2) = |x2 − x1|+ |y2 − y1|

• Max 2D: d(a1, a2) = max(|x2 − x1|, |y2 − y1|)

We devise a simple method to approximate an
upper bound for the maximum scatter TSP solution for
each input graph. Consider the second highest cost edge
incident on each node in the graph. As a tour visits
every node and passes through atleast two of the edges
incident on each node, the least cost edge among the
second highest cost edge from each node gives an upper-
bound for the actual maximum scatter value. We refer
to this approximated bound as the scatter bound.

Pert. Type Hyperparameter

Gaussian (µ, σ)
µ = 0, σ1 = 0.5× min edge

µ = 0, σ2 = 0.05× min edge

µ = 0, σ3 = 0.5× max hull× 1√
nlogn

Uniform (a,b)
a = −σ1, b = σ1
a = −σ3, b = σ3

Table 1: Perturbations created for our dataset.
min edge refers to the cost of the least cost edge in
the graph. max hull is the maximum side length of the
square convex hull that covers all the graph points.

5 Experiments

In this section, we perform perturbation analysis stud-
ies on the 6 algorithms and analyse results in terms of

1Our code and data are available at: https://drive.google.
com/drive/folders/13TaSCj0bHYNgJ2ysb6kHF1TQanvBjq8z?usp=

sharing. Care has been taken to ensure anonymity of the
uploader.
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the quality of output, runtime, stability under pertur-
bation and identification of worst case inputs. For stan-
dardising our results and ensuring reproducibility, all
experiments were run on a Google Cloud Virtual Ma-
chine with the following specifications: N1 Intel Sky-
lake platform, 2vCPU, 7.5GB RAM, Ubuntu Bionic OS
(18.04 LTS). Unless otherwise mentioned, all plots and
results are reported on inputs generated from the Gaus-
sian (µ = 0, σ1 = 0.5× min edge) perturbation type
using the Euclidean distance metric. Nevertheless, we
observed that results with other perturbation types and
edge cost metrics followed very similar trends and hence,
the results that we present are highly generalizable.

5.1 Closeness of algorithm predictions to the
scatter bound. First, we study the closeness of the
algorithms’ predictions for the maximum scatter to the
estimated scatter bound by averaging the predictions
made over several perturbations of each input.

In Figure 1, we compare the average scatter bound
over perturbations of each input x with the average
maximum scatter predicted by each algorithm over per-
turbations of x. We observe that the naive greedy al-
gorithm shows the poorest performance as the obtained
maximum scatter values remain small though the ideal
values increase. Dirac and weave algorithms increase
with the ideal scatter value, but fall short of finding
the most optimal tours. The Pure 2-opt and Random-
ized 2-opt algorithms render the best performance as the
mean maximum scatter closely follows the mean scat-
ter bound. This also helps us in establishing that the
scatter bound is a fair estimate of the maximum scatter
of a graph since the 2-opt algorithm outputs demon-
strate that they are nearly realizable for a wide range
of inputs.

In Table 2, we find the average of the ratio between
the output of each algorithm for each input graph and
the respective scatter bound over the complete set of
input graph perturbations. We observe that while
the Hoffmann Weave algorithm on regular grids has

a theoretical approximation ratio of
√
10
5 ∼ 0.63, the

mean approximation ratio is 0.78, which shows that the
algorithm performs much better in practice and realizes
one of the proposed benefits of our study. The Hoffmann
Weave algorithm performs substantially better than
Naive Weave which establishes the advantage of utilising
the second dimension to increase edge costs. The Pure
2-opt algorithm has the best mean approximation ratio
of 0.82 and hence, provides the highest output quality
in this experimental evaluation.

5.2 Deviation of maximum scatter predictions
under perturbation. Next, to study the stability of

Algorithm Mean Approximation Ratio
Naive Greedy 0.09
Naive Weave 0.30

Hoffmann Weave 0.78
Dirac 0.51

Pure 2-opt 0.82
Randomized 2-opt 0.79

Table 2: Mean approximation ratio between algorithm
prediction and scatter bound

these algorithms under input perturbation, we analyse
the extent of deviation of the maximum scatter value
predicted by each algorithm for various perturbed in-
puts corresponding to each sample x. We quantify the
deviation in two ways:

1. Range of variation (RoV): For a given sample
x, the range of variation is defined as the difference
between the largest and smallest maximum scatter
predictions made by the algorithm among various
perturbed inputs derived from x. If P (x) denotes
the set of all perturbed inputs derived from x and
sp is the maximum scatter predicted for an input
p,

(5.3) RoV (x) = max
p∈P (x)

sp − min
p∈P (x)

sp

2. Scaled Deviation: If sx and sp are respectively
the maximum scatter predictions for the original
sample x and its perturbation p, the scaled devia-
tion (SD) is defined as

SD(x, p) =
sp − sx
sx

Since it is possible for the RoV to be larger when
the unperturbed scatter is larger, computing the
scaled deviation has the effect of normalising by
the unperturbed maximum scatter value.

We observe from Figure 2 that the maximum scatter
predictions show very large variations from the predic-
tion for the unperturbed sample, x when x has a smaller
number of nodes. As the number of nodes increases, the
stability of the algorithm appears to improve, particu-
larly for the Naive Greedy, Dirac and 2-opt algorithms.
However, Weave algorithms show large variations even
when the number of nodes is large. Besides, the Dirac
algorithm is highly stable over a wide range of input
graph sizes. The 2-opt algorithms are also stable with
the RoV values lying below 1500 in most cases. The
naive greedy algorithm is stable only when the number
of nodes is sufficiently large.
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Figure 1: Comparison of the closeness of mean scatter bounds to mean scatter predictions of each algorithm. The
mean is computed over Gaussian perturbations of each input.

From Figure 3, we observe that the scaled deviation
takes on a larger range of values when the number of
nodes is smaller. Each green dot refers to the scaled
deviation value for a distinct perturbed input. All
perturbed inputs with the same number of nodes are
placed on the same vertical line. For most algorithms,
the scaled deviation decreases with increasing number
of nodes. This is because when there are too few
nodes, variations in the extent of perturbation, starting
conditions, etc. have larger impact on the obtained max
scatter value. When the number of nodes increases,
many of these factors get averaged out or are small
after normalization. Similar to earlier observations that
the RoV for Weave algorithms remains large even when
the input graph contains higher number of nodes, we
observe here that the scaled deviation also shows large
variations. Hence, it is evident that Weave algorithms
are less stable, even at higher graph cardinalities. The
largest magnitudes for the scaled deviation are observed
in the Naive Greedy algorithm, with values ranging upto
50. This is because the maximum scatter predictions
remain small even when the number of nodes is large, as
observed in Figure 1, leading to a weaker normalization
effect from sx.

In Figure 4, we average the scaled deviation values

over all perturbations of each sample x and plot the
averages for 3 different edge cost metrics against the
number of nodes in x. First, we observe that the
mean scaled deviation for the Euclidean and Max 2D
edge cost metrics closely follow each other for most
algorithms. Second, for Dirac and 2-opt algorithms, the
mean scaled deviation when the Manhattan metric is
used is higher than for the other metrics. For Weave
algorithms, the variation with the edge cost metric is
quite minimal. To define a grid over the points for
running Weave algorithms, distances between points are
largely measured along axis-aligned directions. This
reduces the disparity among the distances measured
using various edge cost metrics and consequently, the
resultant grid locations are highly likely to be unaffected
by the edge cost metric used.

5.3 Variation in the runtime of algorithms. In
this section, we analyse the variation in the runtime
of different algorithms. We plot the runtime for each
input against the number of nodes in Figure 5. Firstly,
we observe that the runtime increases with the number
of nodes, which is expected since the algorithm has to
explore a larger number of possible tours in the process
of approximating the maximum scatter. For example,
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Figure 2: Comparison of the RoV of the maximum scatter values against the number of nodes in the input x.
The inputs are arranged in the increasing order of the number of nodes along the X-axis. Note that the Y-axis
scale for each plot is different.

Figure 3: Comparison of the Scaled deviation of the maximum scatter predictions against the number of nodes
in x.
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Figure 4: Mean scaled deviation over number of nodes for 3 possible edge cost metrics

in the naive greedy algorithm, after each node is visited,
the algorithm checks all the remaining unvisited nodes
to identify the farthest unvisited node and determine
the next edge in the tour. Hence, the runtime of the
algorithm for an input graph varies as O(n2), if n is
the number of nodes and the plot is roughly quadratic
for the Naive Greedy algorithm. Figure 5 compares
the runtime on two possible values of the perturbation
parameter, σ. It is observed that the variation with
the perturbation parameter is minimal since the exact
location of a perturbed instance doesn’t deeply influence
the average runtime, unless many bad instances are
clustered. The lengths of the vertical lines show the
difference between the maximum and minimum runtime
among input graphs with the same number of nodes.
We notice wider variations in runtime as the number
of nodes increases. Naive greedy algorithms show
comparatively less variation because the number of
iterations required and the steps performed per iteration
are fixed. 2-opt algorithms show the largest variations
and this is because they are heavily dependent on the
initial tour from which the 2-opt steps start. The
choice of nodes among which the 2-opt swap occurs
also determine how fast the optimal solution is reached.
These can vary heavily depending on the initialization
and perturbations.

Algorithm Slowest Slowest Average
(per input) (on average) runtime

Dirac 6002 64 1.241941
Rand. 2opt 1367 10 1.083100
Hf. Weave 209 2 0.004496
Pure 2opt 17 0 0.493515
Nv. Weave 5 0 0.003096
Nv. Greedy 0 0 0.002770

Table 3: (i) Number of perturbed inputs for which each
algorithm has featured as the slowest. (ii) Number of
inputs for which the algorithm has the largest mean
runtime over all its perturbations. (iii) Average runtime
of each algorithm over all perturbations of all inputs.

We also observe that for a given number of nodes
in the range considered, the naive greedy and weave
algorithms take much less time (by a factor of more
than 100) than Dirac and 2-opt algorithms. Hence, we
note that though the results of 2-opt are more accurate,
it is much slower. Table 3 shows the number of per-
turbed inputs for which each algorithm has featured as
the slowest among the 6 algorithms. It is clear that the
Dirac algorithm is the slowest in most cases. It also has
the largest average runtime over all inputs. The naive

Copyright © 20XX by SIAM
Unauthorized reproduction of this article is prohibited



0 250 500 750 1000 1250 1500 1750
Number of nodes

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e 
ta

ke
n

Naive Greedy
Gaussian( , 1)
Gaussian( , 2)

0 250 500 750 1000 1250 1500 1750
Number of nodes

0

2

4

6

8

10

12

Ti
m

e 
ta

ke
n

Dirac
Gaussian( , 1)
Gaussian( , 2)

0 250 500 750 1000 1250 1500 1750
Number of nodes

0

1

2

3

4

5

6

Ti
m

e 
ta

ke
n

Pure 2-opt
Gaussian( , 1)
Gaussian( , 2)

0 250 500 750 1000 1250 1500 1750
Number of nodes

0

2

4

6

8

10

12

14

Ti
m

e 
ta

ke
n

Randomised 2-opt
Gaussian( , 1)
Gaussian( , 2)

0 250 500 750 1000 1250 1500 1750
Number of nodes

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e 
ta

ke
n

Naive Weave
Gaussian( , 1)
Gaussian( , 2)

0 250 500 750 1000 1250 1500 1750
Number of nodes

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e 
ta

ke
n

Hoffmann Weave
Gaussian( , 1)
Gaussian( , 2)

Figure 5: Comparison of the runtime of each algorithm against the number of nodes in the input. The two
coloured curves on each plot show the runtime for inputs generated from two different Gaussian perturbations.
Each vertical line shows the difference between the maximum and minimum runtime for perturbed inputs with
the corresponding number of nodes. Note that the Y-axis scale for each plot is different.

greedy algorithm never features as the slowest, while
the naive weave algorithm does so in 5 instances corre-
sponding to input graphs with very few nodes (16 and
22 nodes). When the mean runtime over all perturba-
tions of each sample x is considered, we observe from the
second column that the last 3 algorithms never feature
as the slowest on average for any input. This empha-
sizes the advantage of performing perturbation studies
as it allows us to analyze the general performance of the
algorithm by averaging over several input graphs in the
same neighbourhood.

6 Conclusion

In this work, we described six approximation algorithms
for MSTSP that are simple, easy to implement, practi-
cal and scalable. Further, we performed a perturbation
analysis of the algorithms to study their usability in
real-world scenarios. We observed that while these al-
gorithms may have bad worst-case time complexity and
output accuracy, analysing their average performance
across a set of perturbed inputs reveals their practical
efficacy. While certain algorithms may have exponential

worst-case complexity, they may be useful in practice.
For example, while the 2-opt algorithm has worst-case
exponential runtime, its expected runtime is polynomial
as the worst-case instances are sparse, rare and not clus-
tered together.

Perturbation analysis of these algorithms has also
revealed trade-offs that must be taken into consideration
when evaluating the performance of an algorithm. We
found that while the Pure 2-opt and Randomized 2-opt
algorithms provide approximations that are closest to
the scatter bound, they are relatively unstable as their
output predictions show large deviations for small per-
turbations to the input graphs. On the other hand, the
Dirac algorithm is highly stable and shows only minor
variations under input perturbation. While the Naive
Greedy algorithm is the fastest, it provides bad approx-
imations that are far off from the scatter bound. The
Weave algorithms provide a relatively better balance
between speed and quality of output. In conclusion,
through this paper, we have presented a comprehen-
sive study of different approximation methods for the
MSTSP that highlight critical factors that must influ-
ence the choice of an algorithm in practical settings.
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Our procedural philosophy can further be extended to
the study of other NP-hard problems of practical im-
portance.
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