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ABSTRACT

KEYWORDS: network interpretability, adversarial detection, natural lan-

guage processing

Multi-head self-attention is a vital component of the Transformer, a neural network

architecture that has achieved state-of-the-art performance on various sequence

learning tasks. In this work, we propose a method to induce accurate sample-

specific attention masks for Transformer-based networks like BERT. We show that

such masks are discriminative of the samples’ output class for various Natural

Language Understanding (NLU) tasks. We leverage this property to enhance model

transparency and classify between authentic and adversarial samples. Further, we

find two other properties which contribute to this classification. First, selectively

mutating the masks leads to contrasting model outputs based on sample authenticity.

Second, the consistency of auxiliary layer-wise outputs varies based on sample

authenticity. By combining these observations, we propose a sample-efficient

and generalized scheme for adversarial detection. We perform experiments on 8

NLU datasets with 11 different adversarial attack types and report state-of-the-art

accuracy ranging from 80 to 90%. In summary, our work introduces an entirely

new and promising approach to interpret and analyze large self-attention based

networks for NLP.
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CHAPTER 1

INTRODUCTION

Key advancements over the last few years in sequence learning and natural language

processing have been centered around the Transformer [Vaswani et al., 2017] and

other architectures like BERT [Yuan et al., 2019] that have been derived from it.

These models make use of the self-attention framework that relates different parts

of a sequence to compute a representation of the sequence. Each unit that performs

self-attention in such models is called as a self-attention head.

Various approaches have been proposed to classify individual self-attention

heads based on the roles they play in a network and to determine the relative

importance among them. Recent works have also attempted to improve the

computational efficiency of Transformer-based models by pruning less important

heads that are not critical to the final prediction. It has been shown that several

heads from a Transformer network can be pruned without substantially affecting the

model performance. A natural question which then emerges is - Can the patterns

of pruning and the positions of the pruned heads explain how such models process

a given input?

A key observation here is that while prior approaches select a fixed subset of

heads to be pruned irrespective of the input sample, it is possible that different

subsets of heads play vital roles in processing different inputs. This motivates

the idea of sample-specific pruning of self-attention heads that we adopt in our

work. Also, unlike earlier approaches that prune heads for improving efficiency,

the objective of our work is to perform sample-specific pruning for improving



the interpretability of Transformer-based models which subsequently helps in

adversarial detection.

A frequently encountered challenge in improving the reliability of machine

learning models is of robustifying them against adversarial samples [Yuan et al.,

2019]. An adversarial sample is an instance that is created by making small

perturbations to an authentic sample such that the model generates a wrong

prediction for the perturbed sample. Such instances pose a severe threat to the

dependability of machine learning models, particularly if they are employed in

safety-critical or large-scale applications.

As Transformer-based models proliferate deeper into real-world applications,

the goal of improving the robustness of such models to adversarial samples gains

prominence. While recent works in this area prescribe to adversarial training to

train robust networks, such approaches can only provide point-wise guarantees

[Pang et al., 2018] that are sensitive to specific attack types. Besides, generating a

large number adversarial samples is challenging due to high computational costs

and difficulties in ensuring that sentence meanings are not significantly changed

[Yu et al., 2018]. As a consequence, there is a clear necessity for methods that

easily generalize to diverse attack types with a small set of illustrative adversarial

samples.

To circumvent the issues of sample efficiency and computational costs, adversar-

ial detection has been advocated as an alternative strategy. In this approach, instead

of training models to make correct predictions on adversarial inputs, a separate

framework is developed that detects such inputs to challenge the model’s prediction

and allow further examination. Recent works [Liu et al., 2018] have explored how

improving the interpretability of neural networks can help in adversarial detection
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since an enhanced understanding of the underlying mechanisms can expose the

reasons for their weaknesses.

In our work, we propose a method to induce sample-specific subnetworks by

pruning self-attention heads from Transformer-based models. We then derive

features from these subnetworks that expose variations in model behavior between

authentic and adversarial samples. The main contributions of this work are

summarized as follows:

• We design an efficient algorithm that identifies a sparse subset of self-attention
heads that encode the paths of important information flow through the
network and define a pruning mask that obscures the remaining heads.

• We propose a novel adversarial detection framework for Transformers that
uses a set of features obtained from sample-specific pruning. We show that
this approach is sample-efficient and easily generalizable to diverse attack
types.

• We devise a series of experiments that evaluate how the pruning mask is
correlated to its corresponding input sample and the roles that the retained
heads play in generating the prediction.. Further, we explore how selectively
mutating the pruning mask can be informative of sample authenticity.

This work has critical importance in various Electrical engineering applications,

particularly in conjunction with image and speech processing techniques that

increasingly using deep neural networks and require more interpretability in

such models. Besides, adversarial robustness is a key factor that determines the

reliability of such models in various applications and our work proposes a method

to effectively address the same. Pruning of self-attention heads has been studied

for improving the efficiency of Transformer-based networks which is crucial in the

development of hardware-efficient Transformer models [Wang et al., 2020a] and

influences the design of hardware chips for running deep learning models. This

work highlights the advantages of developing hardware that reduces overhead in

pruning self-attention heads in such models.

3



CHAPTER 2

RELATED WORK

In this chapter, we briefly review related literature in this area by discussing

approaches that have earlier been proposed for interpreting Transformer networks,

detecting adversarial samples and extracting subnetworks from neural networks.

Further, we provide a primer on the Transformer architecture and the computations

that it performs during inference.

2.1 Extracting subnetworks from neural networks

An important body of work is focussed on extracting subnetworks from neural

networks. Works by Voita et al. [2019], Michel et al. [2019] and Budhraja et al.

[2020] observe that several heads in Transformer networks can be pruned without

substantially compromising on model performance. However, the objective in

these works is to achieve higher compute efficiency by reducing the number of

heads that take part during inference. In all of these studies, a common masking

scheme is applied over all input samples. In contrast, our work involves obtaining

a pruning mask for each sample separately. Lakshminarayanan and Vikram Singh

[2020] showed how ReLU activations act as gates that define a subnetwork within

a deep neural network.

The work by Liu et al. [2018] involves optimizing a set of control gates to

identify a subnetwork within a network with specific application in CNNs for



vision tasks. They demonstrate how such subnetworks improve explainability of

results generated by CNNs using saliency maps. Besides, they emphasize that

the subnetwork representations for adversarial image inputs diverge from the

representations generated for the original image as layers progress and converge

towards representations of target class images. However, the full potential for

adversarial detection has not been explored in this work. Besides, this method

aims to identify the critical subnetwork which is the sparsest possible network that

predicts the same class output, making it computationally expensive. This is in

contrast to our work where we try to maximise the probability of the output class

and later enforce sparsity by removing less-important heads. Our approach has the

advantage of requiring fewer epochs to arrive at a subnetwork.

2.2 Adversarial robustness and detection

Several recent works aimed at improving robustness of deep learning models to

adversarial samples in NLP tasks advocate adversarial training [Chen et al., 2020;

Cheng et al., 2020; Liu et al., 2020]. In this method, the model is trained using a

dataset that contains both authentic and adversarial samples with a joint objective

that maximizes the probability that the model predicts the correct output for both

kinds of samples. In this way, the robustness of the model to adversarial samples

is improved without compromising on the performance on authentic samples.

However, such methods involve the expensive overhead of generating a large

number of adversarial samples to train the model to generalize to various kinds of

attacks. Given the difficulties in training robust models, other works have focussed

on detecting adversarial samples. These include works by Pang et al. [2018] and Li

et al. [2021]. The work by Liu et al. [2018] detects adversarial samples based on the
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downstream prediction confidence but does not leverage the internal mechanisms

of the model.

2.3 Interpreting Transformer networks

The work by Kovaleva et al. [2019] attempts to interpret BERT models by discovering

consistent attention patterns and characterizing self-attention heads based on

specific roles that they play in processing inputs. Jawahar et al. [2019] and van Aken

et al. [2019] interpret the functioning of BERT by dissecting the roles of various

layers. They show how lower layers capture surface-level information while higher

layers capture more complex and long-distance dependencies. [Koh and Liang,

2017] demonstrates how influence functions can be used to interpret machine

learning models by tracing the model’s prediction through its processing stages

back to the training data.

2.4 Background on the Transformer

The Transformer is a deep neural network architecture designed to handle se-

quential data, such as text sentences. However, unlike RNNs, Transformers do

not require that the sequential data be processed in order. A transformer can

simultaneously attend to all parts of the input sequence, thus providing a high

degree of parallelization and faster processing.

The functioning of the encoder portion of the Transformer network is explained

below, considering a sentence (sequence of words) as the input. Consider a sentence

with n words, S = {w1,w2, ...,wT}. Let xt, t ∈ [1,T] be the input to an encoder layer

6



of the Transformer. We define 3 vectors: qt, kt, vt which are called as query, key

and value vectors respectively. Given parameters WQ,WK,WV, these vectors are

computed as follows:

qt = WQxt

kt = WKxt

vt = WVxt

We define, Q = {qt},K = {kt},V = {vt} where t ∈ [1, 2, ..,T]. Now, we introduce

the method of scaled dot-product attention (SDPA) which is the method used to

compute self-attention between these vectors. Given d-dimensional vectors qt, km, vt,

an attention score is obtained as:

αtm = 1
√

d
< qt, km >

where < · > represents dot product

atm = softmax(αtm)

ct =
∑T

m=1 atmvt

The above process can be written in short as:

ct = SDPA(qt,K,V), t = 1, 2, ..,T

C = {ct}

In a transformer network, multi-head attention is used. This means that if there

are h heads, separate query, key and value vectors are defined for i = 1, 2, ..., h. Thus,

the overall context vector is defined as:

7



ct = concat(c1t, c2t, ..., cht)

Such a context vector is generated for all words in the sentence, i.e., for

t = 1, 2, ...,T. This gives an encoded representation for each word in the input

sentence. These representations are then concatenated and passed through a

feed-forward fully-connected sub-layer to obtain the output from the respective

Transformer layer.

8



CHAPTER 3

METHODOLOGY

3.1 Extracting Sample-specific Subnetworks

In this section, our goal is to find a sparse subset of attention heads for each input

sample, such that the output class of the model formed by pruning the remaining

heads remains unaffected.

3.1.1 Setup for pruning attention heads

Each Transformer encoder layer consists of a multi-head self-attention sub-layer

and a position-wise feed-forward sub-layer. Let WQ
ji ,W

K
ji ,W

V
ji be the parameters for

the ith self-attention head in the jth layer of the Transformer network. Given a data

sample x consisting of T tokens represented as dv-dimensional vectors, let X j ∈ RT×dv

be the corresponding input matrix at the jth layer. We now follow the description

of the Transformer in Section 2.4, but present the computations in matrix notation

which enables parallelized processing on GPUs.

We define Q ji = X jW
Q
ji ,K ji = X jWK

ji ,V ji = X jWV
ji as the query, key and value

matrices corresponding to the head respectively. Each self-attention head performs

scaled dot-product attention to generate the head output.

Head ji(X j) = softmax

Q jiKT
ji

√
dk

V ji (3.1)



The output of all the heads in a layer are concatenated and passed through the

feed-forward sub-layer.

Layer j(X j) = concati[Head ji(X j)]WO
j (3.2)

where dk is the dimensionality of each key vector.

To enable pruning of attention heads, we modify Equation 3.2 to weigh the

output of each head by a scalar gating value g ji ∈ [0, 1]. The jth layer of the modified

network is given by

Layerm
j (X j) = concati[g ji ·Head ji(X j)]WO

j (3.3)

Thus, for a data sample x and a Transformer encoder network like BERT with

n layers and m heads per layer, we define the pruning mask vector, g(x) = {g ji} ∈

[0, 1]nm as the vector of gating values. During inference, g ji is replaced by gb
ji ∈ {0, 1}

to characterize the discrete exclusion or inclusion of a head. The corresponding

Boolean pruning mask vector is given by gb(x) = {gb
ji} ∈ {0, 1}

nm. We call the subset

of network heads that are assigned a Boolean gating value of 1 as active heads

and note that the active heads together define a Transformer subnetwork, S(gb(x)),

which processes x using only the active heads.

3.1.2 Generating the pruning mask

Initially, a pre-trained Transformer model like BERT is fine-tuned on a specific

classification task using the standard training procedure to minimize the cross

entropy loss. Therefore, if θ is the set of network parameters, this training step

10



aims to minimize

L
θ
{x1:xN}

=
1
N

N∑
k=1

LCE( f (xk, θ); yk) (3.4)

where f (·) is the function computed by the model with parameters θ, LCE is the

standard cross-entropy loss function, N is the number of input data samples and

yk is the expected model output for input xk. Let θ∗ be the set of optimal network

parameters obtained after training.

In the next step, we wish to obtain a pruning mask vector, g(x) for each sample

x. This is achieved by treating the gating values as trainable model parameters

and optimizing them over the objective function separately for each x. In effect,

this step entails an inference using optimization to obtain gating values for each

sample separately. All the gating values are initialized to the intermediate value of

0.5. Each gating value, g ji is defined as g ji = fHC(p ji), where fHC is a version of the

hard concrete distribution [Louizos et al., 2017] which acts as an activation function

upon p ji as shown below.

g ji =
1

1 + eα·(log(1−p ji)−log(p ji))
(3.5)

The hard concrete function is a smooth differentiable function that is well-defined

between 0 and 1. The plots of the function for different values of α are shown in

Figure 3.1. We observe that as α increases, the function becomes more steep. This

helps to simulate the intended restriction of the gating values taking on Boolean

values (0-pruned head, 1-active head). A comparison is also made with a version of

the sigmoid function 1
1+e−(x−0.5) which is much less steep in the same range. Among

possible values, α=6 gave the best results for our work.

All the network parameters except for the gating values are now frozen and the

11



gating values in the model are optimized using the same objective as before, but

for each data sample separately.

L
g
x = LCE( f (x, θ, g(x)); y|θ = θ∗) (3.6)

Unlike approaches by Voita et al. [2019] and Wang et al. [2020b], we do not

include a regularization term in the optimization objective. Instead, we use the

positive deviation of the gating values after η epochs of optimization as a measure

of the importance of their respective attention heads. We perform a thresholding

over these values to enforce sparsity. Thus, we are effectively selecting heads whose

gating values ascend faster towards 1 as the active heads. This was observed

to reduce the number of iterations required to obtain an optimal pruning mask.

Specifically, each Boolean gating value, gb
ji is derived from g ji as follows.

gb
ji(x) =


1, if g ji(x) ≥ β ·max(g(x))

0, otherwise

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f H
C
(x

)

Hard concrete distribution function

 = 2
 = 4
 = 6

sigmoid

Figure 3.1: Plot of the hard-concrete distribution for different values of α. The
function gets steeper with increasing α. A comparison is also made with
a sigmoid function which is much less steep in this range.

12



where, β(< 1) is a thresholding parameter and max(g(x)) represents the largest

among the nm gating values in g(x).

Figure 3.2 shows the progression of gating values with epochs for a single input

sample. However, two exceptional cases may arise which we address as follows. If

the Boolean gating values of all heads in a layer are found to be 0 after the above

thresholding, the largest gating value in that layer is set to 1 to ensure information

flow through the network. We set β = 0.8 initially, but if the subnetwork prediction

does not match the expected output, we iteratively decrease β by 0.2 and re-apply

the thresholding until the subnetwork generates the desired output. The green

curves in Figure 3.2 that are below the blue line correspond to these two cases.

1 2 3 4 5 6 7 8 9 10
Epoch number

0.30

0.35

0.40

0.45

0.50
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0.60

0.65

0.70

Ga
tin

g 
va

lu
e

Progression of gating values over 10 epochs

inactive head
active head

max(g(x))

Figure 3.2: Variation in the gating values of 144 transformer heads from BERT-Base
when trained over 10 epochs on a single random sample. The gating
values of several heads reduce from 0.5 though the original fully trained
model maintained all heads as active, i.e., with effective gating value of
1.

Figure 3.3 shows the variation of the fraction of authentic samples from 6

different datasets considered in our work that retain a given number of active heads

after pruning. The value peaks around 20-40 heads out of 144 and then quickly

descends which shows that nearly 70% of the heads are not critical for prediction

for most samples across datasets.
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Figure 3.3: Fraction of samples with a given number of active heads from BERT-Base
across 6 tasks on which the model is fine-tuned. Around 20-40 heads
out of 144 suffice for a large number of samples to generate the correct
prediction.

3.2 Model for Adversarial Sample Detection

In this section, we discuss three stages of feature extraction and finally present a

classifier that leverages these features for adversarial detection. The three stages are

demonstrated for a sample input in Figure 3.4. The characteristics of these features

that help to discern adversarial samples are explicated through our experiments in

Section 4.2.1. In further sections of the paper, we use the term target class to refer to

the class predicted by the complete (unpruned) fine-tuned network for an input

sample. For authentic samples, this translates to the true class while for adversarial

samples, this refers to the adversarial class that the model is fooled into predicting.

3.2.1 Pruning mask vector as a feature

The pruning mask vector that is trained by the process detailed in the previous

section forms the first set of input features to our model. We observed distinguishing

characteristics in the masking patterns generated for authentic and adversarial

samples, which result from the model’s attempts to block or pass selective chunks of

information to maximise the target class probability. Since the real-valued pruning
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Figure 3.4: The three stages of feature extraction. Active heads in the pruned and
mutated sample-specific subnetworks from the BERT-Small architecture
are colored. The input on the left is an authentic sample from the SST-2
dataset and on the right is a corresponding adversarial sample. The
outputs logits for sentiment classification from both subnetworks and
the auxiliary layer-wise outputs of the mutated subnetwork are shown.
Notice how the coloring of heads in the middle 2 layers are flipped in
the mutated subnetwork.

mask vector stores more intrinsic information than the Boolean vector, we define

the nm-dimensional vector, F1(x) = g(x) as a feature input to our model.

3.2.2 Mutating the middle layers of the subnetwork

We note that adversarial samples are more sensitive to mutations in the pruning

mask and subsequent changes in the induced subnetwork than authentic samples.

This is because adversarial samples are heavily reliant on the network architecture

and the specific parameter combinations that allow them to fool the network [Wang

et al., 2019]. Hence, when the processing pipeline is changed, they are more likely

to change their output.

Previous studies have shown that the initial layers in BERT are responsible for

phrase-level understanding of an input sentence while the last few layers are highly

task-specific [Jawahar et al., 2019]. Several heads in the middle layers of BERT

capture syntactic relations [Hewitt and Manning, 2019; Goldberg, 2019] and are

multi-skilled [Pande et al., 2021], making them crucial for prediction. As we will
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show in Section 4.2.7, the critical heads for generating the adversarial prediction

for an input sample are mostly those which attend to the perturbed portions of the

input sentence and more than 30% of the middle layers are composed of such heads.

Hence, we hypothesize that mutating the middle layers will diminish the attention

to perturbed portions of the sentence and alter spurious syntactic relations which

the adversarial samples heavily rely on to generate the adversarial output.

Based on this reasoning, we flip the Boolean gating values in gb(x) corresponding

to the middle dn
3 e layers of the network architecture to obtain gc(x) ∈ {0, 1}nm. Thus,

the subnetwork S(gc(x)) induced by gc(x) de-activates the active attention heads in

the middle dn
3 e layers of the original subnetwork and activates the remaining heads.

We run each input sample through its respective mutated subnetwork and obtain a

4-dimensional feature vector, F2(x) consisting of the target class, the predicted class,

the confidence of prediction and a Boolean flag asserting whether the predicted

and target classes are the same.

3.2.3 Layer-wise auxiliary output predictions

For standard classification tasks, the intermediate layers in BERT encode a hierarchy

of linguistic knowledge, with surface-level features in the bottom layers, syntactic

features in the middle and semantic features in the top layers Jawahar et al.

[2019]. Hence, the type and amount of information captured by representations

vary across layers. Since authentic samples are more stable under mask mutation,

representations at each layer are expected to convey similar information as in the case

of the full network. But in the case of adversarial samples, the information conveyed

by certain intermediate layer representations are substantially different due to which

further layers are misinformed and inconsistent information is propagated. Hence,
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there could be intermediate representations that are more representative of classes

other than the target (adversarial) class. Such representations when passed through

a classifier may generate a non-target class.

Given the complete fine-tuned n-layer network with standard network parame-

ters θ∗, we introduce an auxiliary classification layer with parameter set Ωl after

each layer l, ∀ l ∈ {1, 2, ...,n − 1}. We then freeze the standard parameters to θ∗ and

train the auxiliary output layers to maximize the probability that each predicts the

target class from the intermediate representation generated by that layer.

L
Ω
{x1:xN}

=
1

N(n − 1)

N∑
k=1

n−1∑
l=1

LCE( f ′l (pl−1
k , θ, g(xk),Ωl); yk|θ = θ∗, g = {1}nm) (3.7)

where Ω =
n−1⋃
l=1

Ωl, pl−1
k is the representation generated by the (l− 1)th layer and input

to the lth layer such that p0
k = xk and f ′l (·) represents the function computed by the

auxiliary classifier after the lth layer of the network.

Once the training is complete, heads are pruned from the complete network

separately for each input x, based on the mutated pruning vector gc(x) and layer-

wise auxiliary outputs are generated from the subnetwork using the same weights

obtained before. We extract an (n + 1)-dimensional feature vector, F3(x) consisting

of the (n − 1) layer-wise outputs, the number of auxiliary layer outputs that match

the target class and the number of times the layer-wise predictions switch/flip when

visited in the order of layers. This is in contrast to previous studies where the

performance of intermediate layer representations on separate probing tasks was

tested Belinkov et al. [2018]; Liu et al. [2019].
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Feature Constituents
F1 Pruning mask vector g(x)
F2 Target class, predicted class, confidence of prediction,

Boolean flag: target class == predicted class
F3 layer-wise outputs, # auxiliary outputs matching the target

class, # switches in layer-wise predictions

Table 3.1: Summary of individual feature inputs to AdvNet and their constituents
obtained from sample-specific subnetworks

3.2.4 Adversarial Detection Classifier

We define the (nm+n+5)-dimensional vector given byF (x) = concat[F1(x),F2(x),F3(x)]

as the input feature for each sample x. The constituents of each feature are sum-

marized in Table 3.1. Next, we build a classifier consisting of an input layer, two

1-D convolutional layers with ReLU activation, two fully connected layers with

sigmoid activation and a final classification layer with softmax activation. We refer

to this model as AdvNet in the rest of the paper. Since adversarial samples are slow

and computationally expensive to generate, we generate only a small number of

adversarial samples and obtain their feature vectors, F (x). Then, to augment the

data, we cut and paste patches from multiple feature vectors in the training set and

mix their respective ground truth labels in proportion to the length contributed

by each patch. This method is inspired by the CutMix algorithm [Yun et al., 2019]

for augmenting image data. Using soft labels obtained by mixing ground truth

labels has the advantage of improving generalizability and learning speed in neural

networks [Müller et al., 2019].
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CHAPTER 4

EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data

We choose the following standard NLU datasets to obtain authentic samples for the

evaluation of our proposed approach:

1. SST-2 [Socher et al., 2013]

2. Yelp polarity [Zhang et al., 2015a]

3. AG News [Zhang et al., 2015b]

4. MRPC [Dolan and Brockett, 2005]

5. IMDb [Maas et al., 2011]

6. SNLI [Bowman et al., 2015]

7. RTE [Wang et al., 2018]

8. MultiNLI [Williams et al., 2018]

The first three are binary sentiment classification datasets while AG News

consists of news headlines classified into one of 4 categories (world, sports, business,

sci/tech) and MRPC contains sentence pairs with binary labels based on semantic

equivalence. The last three datasets contain sentence pairs labelled on textual

entailment with RTE having two categories (’entailment’ and ’contradiction’) while

MultiNLI and SNLI have an additional ’neutral’ category.



To test our model’s performance on diverse adversarial attack types, we generate

adversarial samples for the above datasets using 11 attack types, namely,

• Word-level attacks: deletion [Feng et al., 2018], antonyms, synonyms [Ren
et al., 2019], embedding [Mrkšić et al., 2016], order swap [Pruthi et al., 2019],
CLARE [Li et al., 2020a], BERT [Li et al., 2020b]

• Character-level attacks: substitution, deletion, insertion, order swap [Gao
et al., 2018].

We note that the set of adversarial samples that we create are indeed difficult

to be simultaneously detected by the same classifier. Typical works in adversarial

detection tend to report results with much fewer attack types (3-4) or on attacks

that are specific to the model architecture. Besides, many of the works only report

on 2-3 datasets while we make an elaborate study over 8 diverse datasets. Several

examples that we generate entail almost no change in meanings or implications

to a human, but result in a fine-tuned BERT model making wrong predictions

with high confidence. Besides, the considered attack types take into account most

sources of perturbations (for example: due to typos, unintended auto-corrects,

mistakes in translation which are accommodated by LM-based attacks: BERT,

CLARE, dropping of words during speech transcription, etc.).

We only use generated samples that fool our complete fine-tuned trained model

as adversarial samples for further experiments. The dataset for each experiment is

prepared by combining the adversarial samples with an equal number of authentic

samples for which the complete network generates the correct predictions.

4.1.2 Implementation details

The number of epochs, η, for which the pruning mask of each sample is trained was

fixed to 10. The first two convolutional layers in AdvNet have a kernel size of 3
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and generate 32 and 16 output feature maps respectively. The two fully connected

layers have output dimensions of 32 and 8 with dropout rates of 0.1. We use the

binary cross-entropy loss function and the Adam optimizer for training with a

learning rate of 0.001. The model is trained for 100 epochs with early stopping. All

experiments were performed with a train-validation-test split of 70-10-20 on an

NVIDIA Tesla K80 GPU. The implementations of the attack types are sourced from

the work by Morris et al. [2020].

4.2 Results and Discussion

4.2.1 Feature-specific analysis

Here, we perform experiments that establish the importance of each set of selected

features to corroborate its contribution towards adversarial detection.

Pruning mask vector (F1(x)): The ability of our model to distinguish between

authentic and adversarial samples using a sample-specific subnetwork belies the

fact that for each input sample, there is a subset of attention heads which is critical

to the inference of the target class for that sample. This implies that the pruning

mask which selects a subset of important heads can be interpreted in association

with the target class for that sample. One way to establish this is by showing that

the pruning mask vector is strongly correlated to the target class for each input

sample. To achieve this, we project the pruning mask vector g(x) for each authentic

sample x onto a 2D-plane using the t-SNE method [van der Maaten and Hinton,

2008] as shown in Figure 4.1(a), (b). We observe distinguishable clusters attributable

to the pruning mask vectors of samples with distinct target classes. Thus, we infer

that the pruning mask vector is highly discriminative and strongly correlated to
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the target class of the sample.

We now extend this experiment to explore clustering patterns when both

authentic and adversarial samples are passed. We present the result in Figure 4.1(c).

We note that adversarial samples group together with the authentic samples whose

true class is the same as their adversarial class. Within clusters corresponding

to the same target class, there is a moderate distinction between the adversarial

and authentic samples but a better separation is possible when the complete

nm-dimensional vector is used as will be demonstrated in further experiments.
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Figure 4.1: Results of applying t-SNE on the pruning mask vector for (a) SST-2,
(b) AG News (c) t-SNE plot of pruning mask vectors of authentic and
adversarial samples.

Mutated subnetwork features (F2(x)): By analysing the behavior of the

mutated subnetworks on corresponding input samples, we make the following key

observations over a majority of the datasets. (i) The mutated subnetwork is more

likely to predict the target class output for an authentic sample than an adversarial

one as shown in Table 4.1. (ii) It predicts the target class with higher confidence
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Figure 4.2: Cumulative distribution function (CDF) over the target class output logit
of the mutated subnetwork. The large area below the green curve with
logit value<0.5 corresponds to a large number of adversarial samples
whose mutated subnetworks predict a non-target class.

in case of authentic samples than adversarial ones. (iii) It predicts a non-target

class with high confidence for some adversarial samples. Figure 4.2 shows the

cumulative distribution function of the logit corresponding to the target class for

both kinds of samples. Only 9% of authentic samples had output logit lower than

0.85 while 20% of adversarial samples showed this. Besides, 30% of adversarial

samples with output logit higher than 0.85 gave the wrong prediction.

Dataset Non-target o/p (Mutated) Switches>1 (Layer-wise)
SST-2 (12.3, 34.2) (37.9, 54.8)
Yelp (3.8, 5.3) (0.83, 1.08)

AG News (6.6, 22.8) (3.2, 17.0)
MRPC (21.3, 24.3) (10.3, 8.77)
IMDb (0.33, 2.18) (0.16, 1.45)
SNLI (2.83, 96.0) (11.6, 41.0)
RTE (24.5, 22.2) (44.2, 50.9)

MultiNLI (11.0, 24.8) (24.3, 42.5)

Table 4.1: Percentages of (authentic, adversarial) samples whose (a) mutated sub-
networks generated non-target class predictions; (b) layer-wise outputs
showed more than one switch.

Layer-wise auxiliary output features (F3(x)): We observe that for authentic

samples, the layer-wise outputs are mostly consistent with the target class output,

whereas for adversarial samples, several of the layer-wise outputs do not match
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Figure 4.3: Fractions of authentic and adversarial samples that generate a non-target
class prediction in each auxiliary layer output.

the target class. On average across datasets, we observed that 52.5% of adversarial

samples generate more than 2 auxiliary output predictions that do not match the

target class while only 23.1% of authentic samples do the same. The distribution

of auxiliary output mismatches (non-target class predictions) across layers of the

mutated subnetwork is shown in Figure 4.3. We observe that for most layers, the

fraction of authentic samples having non-target class output predictions is higher

than adversarial samples. Besides, when traversing the layer-wise outputs in order,

it is observed that the output predictions of adversarial samples switch among

possible classes more often than authentic samples as shown in Table 4.1.

4.2.2 Performance on Adversarial Detection

Following the observations in the previous section, we use the AdvNet architecture

for adversarial classification to leverage distributional variations in the features

between authentic and adversarial samples. The performance of our proposed

approach on adversarial detection on the BERT-Small and BERT-Base architectures

is reported in Table ??. Across both architectures, we note that the model performs
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better on simpler sentence labelling datasets like SST-2 and Yelp when compared

to more complex tasks like RTE and MRPC which require comparison between

sentences. Existing work [Pande et al., 2021] shows that for simpler tasks, the BERT

heads perform discrete non-overlapping roles, while for complex tasks, there is

greater overlap in head roles and a few heads perform more than one role. This

overlap and multi-skilled nature makes it difficult for the same set of heads to

act uniformly across input samples, thus reducing consistency in the generated

features. Results on BERT-Base are observed to be better than BERT-Small across

tasks due to the higher dimensionality of the feature vector F (x) and more intrinsic

information due to a larger number of layers in BERT-Base.

We also observe that the model achieves high accuracies despite a seemingly low

number of generated adversarial samples. This shows the benefit of employing the

CutMix algorithm for data augmentation. Besides, we observed that increasing the

train set size does give much improvement in accuracy which shows that patterns

of variation between the feature vectors are consistent across diverse input text

sentences and attack types which AdvNet captures with sample-efficiency.

Dataset
Authentic

Samples
# Adversarial

for BERT- Small
AdvNet + CutMix

for BERT- Base
AdvNet + CutMix

Prec Rec Acc.(%) Prec Rec Acc.(%)
SST-2 613 0.79 0.78 78.57 0.91 0.90 90.74
Yelp 462 0.76 0.76 76.72 0.87 0.87 87.68

AG News 622 0.77 0.76 76.63 0.86 0.86 86.25
MRPC 712 0.75 0.74 75.05 0.86 0.85 84.61
IMDb 274 0.74 0.74 74.09 0.80 0.81 81.18
SNLI 1046 0.71 0.72 72.07 0.82 0.82 82.50
RTE 477 0.73 0.73 73.64 0.80 0.80 80.43

MultiNLI 548 0.65 0.64 64.26 0.73 0.73 72.61

Table 4.2: Results of Adversarial Detection for BERT - Small and BERT - Base across
8 datasets.
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4.2.3 Comparison against other approaches

In Table 4.3, we compare the performance of AdvNet against the following state-of-

the-art approaches for robustifying BERT models against adversarial samples:

• DISP [Zhou et al., 2019]: In this approach, a classifier called the perturbation
discriminator makes a binary decision on each token in the input sentence
predicting whether it is an authentic or perturbed one. If none of the tokens
are predicted to be perturbed, the input is considered authentic.

• FGWS [Mozes et al., 2021]: Here, a word frequency-guided approach is used
to identify infrequent words in sentences and replace them with more frequent,
semantically similar words. Then, the difference in prediction confidence of
the model on both the original and substituted sentences is considered. If this
value is above a threshold, the sentence is deemed to be adversarial.

• TMixADA and SMixADA [Si et al., 2020]: In these methods, a model is
fine-tuned and then attacked to generate adversarial samples. Then, the
model undergoes adversarial training in which the model is trained using
both the identified adversarial samples and linear interpolations of these
samples. When evaluated on a test set, the adversarial detection accuracy is
determined by the percentage of adversarial samples for which the model
generates the correct prediction.

These approaches were tested on the BERT-Base architecture to obtain the

precision, recall and accuracy on adversarial detection. We observe that on both

the SST-2 and Yelp datasets, our model outperforms the other approaches on most

metrics. This indicates that our model achieves substantially better performance

than well-known methods. This is primarily due to the fact that our model is less

dependent on specific kinds of perturbations and more on the model’s behaviour

when processing an adversarial sample.

4.2.4 Ablation Study

In this section, we analyse the importance of each feature input to our model for

adversarial detection. The results of this study are presented in Table 4.4. The
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Dataset Model Precision Recall Accuracy

SST-2

TMixADA 0.72 0.28 58.55
SMixADA 0.64 0.20 54.31

DISP 0.85 0.68 78.73
FGWS 0.86 0.68 78.34

AdvNet 0.90 0.91 90.74

Yelp

TMixADA 0.79 0.35 63.15
SMixADA 0.84 0.49 69.71

DISP 0.89 0.76 83.15
FGWS 0.90 0.88 89.21

AdvNet 0.87 0.87 87.68

Table 4.3: Comparison of AdvNet’s performance against other approaches for
adversarial detection.

model is trained with different subsets/variants of feature inputs on the adversarial

detection task. In all of these experiments, the structure of the classifier remains

the same as AdvNet, except that the input dimension is changed depending on

the size of the feature subset considered. We observe that passing the pruning

mask vector alone, i.e, F1(x) results in higher accuracy than when passing F2(x) or

F3(x) individually. This means that the pruning mask vector is the most important

feature input to the model. Between using F2(x) and F3(x), we observe that on

certain datasets, the model performs better when F2(x) alone is used and on others

when F3(x) alone is used. However, in cases where using F2(x) alone yields better

results, the results from using F1(x)∪F3(x) is better than using F1(x)∪F2(x). This is

because there is greater overlap in the adversarial samples detected using features

F1(x) and F2(x), while F3(x) helps in the discovery of new adversarial samples that

would otherwise remain undetected. Thus, all three feature sets are crucial to the

performance of our model. Next, we test the performance of the model when the

Boolean pruning mask vector (F b
1 (x)) is used instead of the real-valued vector. The

lower accuracy indicates that the real values capture more intrinsic information

about the gating pattern. Finally, we compare the model performance with and

without using the CutMix algorithm and conclude that augmenting the training set
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using CutMix evidently improves the accuracy.

Features SST-2 Yelp MRPC RTE IMDb SNLI MultiNLI
F1 82.87 80.23 76.35 74.44 74.54 80.83 66.95
F2 74.07 62.08 68.82 60.88 60.00 57.91 51.30
F3 64.79 66.01 59.40 56.67 55.45 58.33 60.00
F2,F3 77.46 68.83 61.96 60.23 61.81 56.25 64.78
F1,F2 83.79 86.69 74.35 76.11 74.68 78.83 67.39
F1,F3 85.64 85.19 82.05 77.18 78.18 79.58 67.39
F

b
1 ,F2,F3 82.23 83.57 77.35 74.06 74.23 70.41 69.65

(without CutMix)
F1,F2,F3

85.59 84.30 80.27 77.21 73.78 75.64 66.85

(AdvNet)
F1,F2,F3

90.74 87.68 84.61 80.43 81.18 82.50 72.61

Table 4.4: Table for ablation study of AdvNet.

4.2.5 Alternative for feature input F3

From Section 3.2.3, we know that layers in BERT encode a hierarchy of linguistic

knowledge. As intermediate representations improve over successive layers, the

likelihood of the representations of an authentic sample predicting the correct

class increases over successive layers of the network. On the contrary, adversarial

samples are crafted to fool the final representations generated by the network

and it is less likely that they would generate the same adversarial output with all

intermediate, sub-optimal feature representations.

Hence, we have explored an alternative approach for generating the feature input

F3. In this method,the auxiliary layer-wise outputs are obtained by introducing

classification layers after each encoder layer of the complete fine-tuned network

(without masking or mutation). Then, akin to the strategy used for obtaining F3, an

(n + 1)-dimensional feature vector F4 is obtained. Table ?? shows the results of an

ablation study in which the feature F3 is replaced with F4. We observe that while

the achieved accuracies are close in both cases, using F3 yields slightly higher final
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performance as it leverages the differential stability of authentic and adversarial

samples under mask mutation.

Features SST-2 Yelp MRPC RTE IMDb SNLI MultiNLI
F4 62.50 66.01 62.39 56.44 57.27 60.00 65.21
F2,F4 77.31 67.48 61.53 69.44 60.47 62.30 52.17
F1,F4 79.62 81.28 76.23 76.66 76.36 77.91 67.39
F

b
1 ,F2,F4 85.19 84.72 74.58 72.77 77.27 69.83 68.26

(without CutMix)
F1,F2,F4

86.22 86.69 78.77 77.22 72.73 71.29 63.91
F1,F2,F4 90.27 87.19 84.61 80.55 78.81 81.25 70.43

(AdvNet)
F1,F2,F3

90.74 87.68 84.61 80.43 81.18 82.50 72.61

Table 4.5: Table for comparative study of using feature F4 instead of F3

4.2.6 Heads vary in functionality across layers

In this section, we classify individual attention heads of the network based on

their role in processing the input by considering the token pairs which the head

attends to with the top 20% highest attention scores. This would help us to further

reason out why certain heads are pruned and others retained at various layers of

the network. First, we classify the relation between the token pairs into one of the

following categories:

1. Positional: The two tokens are adjacent to each other in the input sentence.

2. Delimiter: At least one of the two tokens is among the delimiter tokens used
at sentence boundaries, like the [CLS] and [SEP] tokens in BERT.

3. Syntactic: The token pairs have a syntactic relation between them, like a
subject-verb pair or a verb-adverb pair.

4. Task-specific: One of the tokens is highly informative for the considered
task. For example, in the SST-2 sentiment classification task, a token with a
sentiment polarity that agrees with the overall sentiment of the input sentence
is considered as a task-specific token.

5. Punctuation: One of the tokens is a punctuation mark in the input sentence.
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For each authentic sample, we classify each head into one of the above categories

depending on the majority category to which token pairs with the highest 20%

attention scores of that head belong to. We observed that the role of a head remains

the same across most samples. Thus, we assign a universal category to each head

as the majority category of the head across all samples.

Figure 4.4(a) shows the distribution of head categories across the layers of

BERT-Base for the SST-2 dataset, when analysed over the set of authentic samples.

We observe that the percentage of task-specific (polarity) tokens increases in the

upper 4 layers. This confirms our assertion in Section 3.2.2 that the last few layers are

highly task-specific and therefore, attends to tokens that carry the target sentiment

of the input sentence. This also substantiates the claim in Section 3.2.3 that there is a

build-up of semantic information over successive BERT layers because identifying

polarising tokens requires deeper understanding of word meanings.
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Figure 4.4: Variation of the roles played by important heads across different encoder
layers with (a) authentic sample inputs; (b) adversarial sample inputs.
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4.2.7 Heads change functionality when exposed to adversarial

samples

Next, we follow a process similar to the above to categorize head-roles when

adversarial samples are passed through the network. We observe a characteristic

shift in trends by which several heads assign high attention scores to the perturbed

portions of the sentence. For example, in cases where a random word was inserted,

the corresponding inserted token received high attention values from several heads

across layers. To account for heads that play this role over a majority of input

samples, we introduce a new head-role category called Perturbed token heads and

display the result in Figure 4.4(b). The high percentage of perturbed token heads

across layers of the network substantiates the claim that the perturbed portions of

the sequence receive higher attention.

We had earlier observed that the ability of AdvNet to detect adversarial samples

based on the gating values belies the fact that these values show deviations from

standard patterns when they are generated for an adversarial sample. Based on

the above observation, we conclude that these deviations are attributable to the

abnormally high attention that is paid to the perturbed portions of the sequence.

4.2.8 Refereeing heads in adversarial detection

In this section, we explore the influence of each gating value in generating the

prediction for our adversarial detection model. We make use of the Grad-CAM

[Selvaraju et al., 2017] approach to identify critical neurons in the input layer of

AdvNet that have large gradients from the target class (authentic or adversarial)

flowing through them. Among these critical neurons, we consider those that
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correspond to the gating values, i.e, F1(x) and call the heads corresponding to these

neurons as refereeing heads.

From Figure 4.5, we observe that word swap attacks like antonyms, synonyms

and embeddings require a greater number of refereeing heads, while character-level

attacks need fewer. This is because character-level changes make the token invalid,

i.e, the model treats it as an unknown token absent in the vocabulary. Since this

brings a more apparent change to the input representation to the model, small

deviations from standard gating patterns are sufficient to mislead the model and

generate a false output, leading to fewer refereeing heads. Since introducing

synonym and embedding based perturbations change the input representation to

the model by a smaller extent, larger deviations from the gating pattern are required

to block or pass selective chunks of information to mislead the model.
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Figure 4.5: Variation of the fraction of refereeing heads used by the adversarial
detection model across various adversarial attack types. The split of the
refereeing heads across 4 layer subsets is also shown.
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4.2.9 Performance on various attack types

In Table 4.6, we compare accuracies separately on each of the 11 considered attack

types. We observe that in general, the accuracies on word-level attacks is higher

than on character-level attacks. This can be explained using the same arguments as

those mentioned in the above section (Section 4.2.8). As word-level attacks bring

greater changes to standard gating patterns, it is easier for the AdvNet model to

infer these changes from the set of input features. Character-level attacks result in

smaller deviations from standard gating patterns when making the pruning mask,

which makes it more challenging for the attack to be detected.

We also observe that on some dataset, attack combinations, the model achieves

very high accuracies upto 100%, which shows that the model is very good at

detecting deviations in gating patterns resulting from specific kinds of perturbations.

Dataset Word-level attacks Character-level attacks
DEL ANT SYN EMBED SWAP CLARE BERT SUB DEL INS SWAP

SST-2 0.84 1.00 0.95 1.00 0.75 0.89 0.86 0.92 0.80 0.87 0.89
Yelp 0.75 0.92 0.91 1.00 0.87 0.83 0.83 0.93 0.77 0.88 0.89

MRPC 0.75 0.75 1.00 0.62 1.00 1.00 1.00 1.00 0.67 0.67 1.00
RTE 0.75 0.84 0.86 0.87 0.79 0.79 0.76 0.82 0.76 0.82 0.82

IMDb 0.80 0.67 0.85 0.89 0.80 0.78 0.80 0.94 0.75 0.96 0.79
SNLI 0.61 0.80 0.69 0.88 0.78 0.73 0.63 0.85 0.88 0.65 0.83

Table 4.6: Accuracies across datasets for each attack type. Legend: SUB-substitution,
DEL-deletion, SYN-synonym, EMBED-embedding, INS-insertion, SWAP-
order swap. Refer Section 4.1.1 for descriptions of attack types.

4.2.10 Comparison of AdvNet with standard classifiers

In this section, we compare the performance of the AdvNet classifier with other

standard classifiers. The same set of features are passed as input to each classifier

and the results are presented in Table 4.7. Hyperparameters for each classifier are
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fine-tuned to obtain the highest accuracy. We observe that AdvNet outperforms

the other classifiers. This can be attributed to the following reasons: (i) The

1-D Convolutional layers first capture local relations including those within each

pruning mask layer in F1, (ii) The fully connected layers capture both local and

global relations across pruning mask layers in F1 and across features F1,F2,F3. The

other classifiers either have lower representational power or are unable to capture

relations systematically as explained here for AdvNet. Thus, we can conclude

that the AdvNet architecture is effective in utilising the features extracted from

sample-specific subnetworks to detect adversarial samples.

Adversarial Detection Classifier BERT-Small BERT-Base
Logistic Regression 66.48 84.25

SVM 67.03 83.15
Random Forest 80.27 86.11
GradientBoost 78.02 87.07

AdaBoost 68.68 78.70
Decision Tree 67.03 75.00

FCNN 71.42 86.11
LSTM 66.59 75.61

Transformer 67.69 80.27
AdvNet 78.57 90.74

Table 4.7: Adversarial detection accuracy of various classifiers on the same feature
inputs of samples from the SST-2 dataset.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we present a novel approach for improving the transparency of

Transformer-based neural networks using sample-specific pruning of self-attention

heads. We introduce a new approach for adversarial detection that uses the pruning

mask as a feature and leverages the differential behaviour of a mutated subnetwork

to authentic and adversarial samples.

We benchmark the results of our model against other known approaches for

adversarial detection and also compare the performance of our classifier, called

AdvNet, against other standard classifiers. Subsequently, we demonstrate that our

approach achieves state-of-the-art accuracy in adversarial detection that generalizes

well to diverse datasets and attack types.

Further, we explain our observations by analysing the characteristics that

differentiate each feature based on whether it is sourced from an authentic or

adversarial input sample. We use clustering methods to show the discriminative

nature of the pruning masks and the output logits of the mutated network to show

how adversarial samples are less stable under mask mutation. We then demonstrate

how the consistency of auxiliary layer-wise outputs from the mutated network can

be informative of sample authenticity.

Further, we perform an ablation study to establish the individual importance of

each feature input. Then, we analyse the functionality of self-attention heads in

various layers of the network and correlate it with the heads that are pruned/retained.



Besides, we introduce the idea of refereeing heads which we identify as heads

crucial for adversarial detection.

In the future, we hope to extend the applicability of our approach (i) to newer

Transformer networks like RoBERTa, DistilBERT and ELECTRA; (ii) to goals beyond

classification like regression and language generation and (iii) to tasks beyond

natural language understanding including vision and speech tasks. Given that

neural network transparency is of more general interest than adversarial detection,

we wish to explore further avenues where the learnings from this work can be

applied, particularly in developing intrinsic methods for explaining what portions

of an input are more critical to the generation of the correct output. Further, given

that pruning of self-attention heads has vital applications in improving compute

efficiency, we wish to explore how the results of our work can be applied for

developing more efficient methods for evaluating and explaining Transformer

networks.
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