Sample-specific Attention Masks for Transformer Models

Emil Biju

August 21, 2022

Emil Biju (NLP)

Sample-specific Attention Masks

August 21, 2022

The Transformer

- Novel Neural network architecture for processing sequence-based inputs
- Achieved state-of-the-art accuracy in various sequence learning tasks, particularly in NLP
- Transformer-based models like BERT have gained prominence in Machine Translation and other NLU tasks.

.∋...>

Background: Transformer Architecture

- Consider a Transformer model with *n* layers and *m* heads per layer
- Each head computes self-attention on the input sentence. Self-attention relates different parts of a sentence and defines relationships across words/phrases.
- Layer_j(X_j) = concat_i[Head_{ji}(X_j)] W_j^O

-∢ ∃ ▶

Image: A matrix and a matrix

Interpretability

- Roles of self-attention heads (Voita et al. [2019], Michel et al. [2019])
- Roles of Transformer layers (Jawahar et al. [2019], van et al. [2019])

Efficiency

 Recent works have shown that several heads from Transformer networks can be pruned with little impact on model performance

Adversarial Robustness

- Adversarial training for model robustness - requires a large number of training samples
- Slow & compute-intensive (Chen et al. [2020])

Emil Biju (NLP)

4/19

Setup for pruning self-attention heads

How to prune self-attention heads?

• We weigh the output of each head by a scalar gating value $g_{ii} \in \{0, 1\}$.

$$Layer_{j}(X_{j}) = concat_{i}[g_{ji} \cdot Head_{ji}(X_{j})]W_{j}^{O}$$

Define a pruning mask vector

 Flatten the gating values for all heads in all layers of the network to obtain the vector g(x) and the induced subnetwork is $\mathcal{S}(g(x))$.

Generating sample-specific pruning masks

- First, the standard network parameters are fine-tuned for the task considered $\implies \theta^*$
- Each gating value is represented by $g_{ji} = f_{HC}(p_{ji}), f_{HC}$ is the hard-concrete distribution

$$g_{ji} = rac{1}{1+e^{lpha\cdot(log(1-p_{ji})-log(p_{ji}))}}$$

 Freeze standard parameters to θ^{*}, *p_{ji}* ← 0.5 and train parameters in g(x) with the same objective

$$\mathcal{L}_{x}^{g} = \mathcal{L}_{CE}(f(x, \theta, g(x)); y|\theta = \theta^{*})$$

6/19

Generating sample-specific pruning masks

Define a Boolean pruning mask vector $g^b(x)$

$$g^b_{ji}(x) = egin{cases} 1, & ext{if } g_{ji}(x) \geq eta \cdot \max(g(x)) \ 0, & ext{otherwise} \end{cases}$$

< 47 ▶

→ ∃ →

t-SNE plot of Pruning mask vector

- Distinct clusters for pruning mask vectors of separate classes ٠
- Moderate separation between authentic and adversarial samples with the same target class

Motivation

- Adversarial samples are heavily reliant on network architecture and specific parameter combinations to fool the network
- Less likely that a mutated subnetwork would generate the same prediction for an adversarial sample.

Layer subset	et Function of heads				
Initial layers	Surface/phrase-level understanding				
Middle layers	Capture syntactic relations				
	Perform multi-task processing				
Final layers	Highly task-specific				

Idea

• Mutate the pruning mask vector by inverting the gating values in the middle layers.

Mutating the pruning mask vector

Procedure

- Given $g^b(x)$, the boolean gating values corresponding to the middle $\lceil \frac{n}{3} \rceil$ layers are flipped to obtain $g^c(x)$.
- Input x is passed through mutated subnetwork $S(g^c(x))$

Observations

- Authentic: Low impact (target class predicted with high conf)
- Adversarial: High impact (non-targets predicted with high conf)

Feature $\mathcal{F}_2(x)$

- target class, predicted class, confidence of prediction
- boolean flag: target class == predicted class

Emil Biju (NLP)

Sample-specific Attention Masks

Motivation

- Authentic samples are more stable under mask mutation Representations at each layer of the mutated subnetwork do not change much
- Adversarial samples are less stable \implies Some intermediate representations are very different, hence false information is propagated.

Idea

- What information does each layer carry?
- Predict the output class from the representation generated by every layer of the mutated subnetwork

Layer-wise auxiliary outputs

- Given the complete fine-tuned network, introduce classification layers after every layer of heads (except the final layer).
- Freeze all standard parameters and train each classification layer to maximize the target class probability.
- Prune the network using $g^{c}(x)$ and obtain layer-wise outputs.

Observations

Authentic	Adversarial			
Majority of outputs	Several non-target class			
belong to target class	outputs generated			
Stable outputs after	Outputs keep switching			
first few layers	between classes			

Feature $\mathcal{F}_3(x)$

n-1 layer-wise outputs; number of auxiliary layer outputs that match the target class; number of switches in the layer-wise predictions

Emil Biju (NLP)

Sample-specific Attention Masks

August 21, 2022

AdvNet: Adversarial Detection Classifier

- Input: $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$
- Architecture: Two 1-D Convolutional layers (ReLu), two FC layers (sigmoid), output classification layer (sigmoid)
- Output: Binary label (0-authentic, 1-adversarial)

Data Augmentation using CutMix

- Creating a large number of adversarial samples is time/compute-consuming
- Extend CutMix to 1D: Cut and paste patches from multiple feature vectors and mix ground truths proportionally

Emil Biju (NLP)

Sample-specific Attention Masks

Experimental setup

8 Datasets

- SST-2, Yelp, IMDb sentiment
- AG News news category
- MRPC sentence equivalence
- RTE, SNLI, MultiNLI textual entailment

11 attacks

- Word-level attacks
 - deletion, antonyms, synonyms, embeddings, order swap, BERT-LM, CLARE
- Character-level attacks
 - substitution, deletion, insertion, order swap

Authentic	# Adversarial	AdvNet + CutMix			AdvNet + CutMix		
Dataset	Samples	for BERT- Small			for BERT- Base		
		Prec	Rec	Acc.(%)	Prec	Rec	Acc.(%)
SST-2	613	0.79	0.78	78.57	0.91	0.90	90.74
Yelp	462	0.76	0.76	76.72	0.87	0.87	87.68
AG News	622	0.77	0.76	76.63	0.86	0.86	86.25
MRPC	712	0.75	0.74	75.05	0.86	0.85	84.61
IMDb	274	0.74	0.74	74.09	0.80	0.81	81.18
SNLI	1046	0.71	0.72	72.07	0.82	0.82	82.50
RTE	477	0.73	0.73	73.64	0.80	0.80	80.43
MultiNLI	548	0.65	0.64	64.26	0.73	0.73	72.61

- Performance on BERT-Base is better than BERT-Small
- Performance on simpler tasks with shorter inputs (SST-2, Yelp) is better
- Precision, recall and accuracy values are in the same proximity

Comparison with other SoTA methods

Dataset	FGWS	NWS	DISP	AdvNet
SST-2	71.93	70.31	68.73	90.74
Yelp	78.36	74.72	70.15	87.68
AG News	70.41	65.62	66.38	91.68
MRPC	69.85	68.02	62.22	84.61
IMDb	75.98	65.72	75.23	81.18
SNLI	75.41	71.82	72.92	82.50
RTE	71.23	64.27	66.40	80.43
MultiNLI	60.23	56.94	59.34	72.61
QQP	73.52	70.20	69.86	75.27
QNLI	78.14	74.58	76.92	86.07

Table: Comparison of AdvNet's performance against other approaches for adversarial detection.

Ablation Study

Features	SST-2	Yelp	MRPC	RTE	IMDb	SNLI	MultiNLI
\mathcal{F}_1	82.87	80.23	76.35	74.44	74.54	80.83	66.95
\mathcal{F}_2	74.07	62.08	68.82	60.88	60.00	57.91	51.30
\mathcal{F}_3	64.79	66.01	59.40	56.67	55.45	58.33	60.00
$\mathcal{F}_2,\mathcal{F}_3$	77.46	68.83	61.96	60.23	61.81	56.25	64.78
$\mathcal{F}_1, \mathcal{F}_2$	83.79	86.69	74.35	76.11	74.68	78.83	67.39
$\mathcal{F}_1,\mathcal{F}_3$	85.64	85.19	82.05	77.18	78.18	79.58	67.39
$\mathcal{F}_1^b, \mathcal{F}_2, \mathcal{F}_3$	82.23	83.57	77.35	74.06	74.23	70.41	69.65
$\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$							
(without CutMix)	85.59	84.30	80.27	77.21	73.78	75.64	66.85
$\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$	90.74	87.68	84.61	80.43	81.18	82.50	72.61

Table: Table for ablation study of AdvNet

- \mathcal{F}_1 is the most crucial feature
- In cases where $Perf(\mathcal{F}_2) > Perf(\mathcal{F}_3)$, $Perf(\mathcal{F}_1 \cup \mathcal{F}_3) > Perf(\mathcal{F}_1 \cup \mathcal{F}_2)$
- Using real-valued pruning mask is better than Boolean vector
- Data augmentation considerably improves performance

Emil Biju (NLP)

Sample-specific Attention Masks

Digging deeper: Why model behaviour on authentic and adversarial samples vary?

Figure: Roles played by important heads across encoder layers

- Very high number of heads attend to perturbed portions of the sentence in adversarial samples
- $\bullet\,$ This causes changes in standard gating patterns $\,\Longrightarrow\,$ inferred from \mathcal{F}_1
- Many of these changes are negated on mutating the pruning mask \implies affects mutated results $(\mathcal{F}_2, \mathcal{F}_3)$

Emil Biju (NLP)

Other Work

- Comparison with other SoTA methods
- Attack-type based analysis
- Critical heads for adversarial detection

Further Scope

• Extension to other BERT models, to vision/speech tasks, beyond classification tasks

Thank You